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Abstract

How do language models (LMs) represent characters’ beliefs, especially
when those beliefs may differ from reality? This question lies at the heart of
understanding the Theory of Mind (ToM) capabilities of LMs. We analyze
Llama-3-70B-Instruct’s ability to reason about characters’ beliefs using
causal mediation and abstraction. We construct a dataset that consists of
simple stories where two characters each separately change the state of
two objects, potentially unaware of each other’s actions. Our investigation
uncovered a pervasive algorithmic pattern that we call a lookback mechanism,
which enables the LM to recall important information when it becomes
necessary. The LM binds each character-object-state triple together by co-
locating reference information about them, represented as their Ordering
IDs (OIDs) in low rank subspaces of the state token’s residual stream.
When asked about a character’s beliefs regarding the state of an object, the
binding lookback retrieves the corresponding state OID and then an answer
lookback retrieves the state token. When we introduce text specifying that
one character is (not) visible to the other, we find that the LM first generates
a visibility ID encoding the relation between the observing and the observed
character OIDs. In a visibility lookback, this ID is used to retrieve information
about the observed character and update the observing character’s beliefs.
Our work provides insights into the LM’s beliefs tracking mechanism,
taking a step toward reverse-engineering ToM reasoning in LMs.

1 Introduction

The ability to infer mental states of others—known as Theory of Mind (ToM)—is an essential
aspect of social and collective intelligence (Premack & Woodruff, 1978; Riedl et al., 2021).
Recent studies have established that language models (LMs) can solve some tasks requiring
ToM reasoning (Street et al., 2024; Strachan et al., 2024a; Kosinski, 2024), while others have
argued against it (Sclar et al., 2025; Shapira et al., 2024; Kim et al., 2023a, inter alia). However,
existing works primarily involve behavioral assessments, which do not reveal the internal
mechanisms by which LMs encode and manipulate representations of mental states to solve
(or fail to solve) such tasks (Hu et al., 2025).

In this work, we investigate how LMs represent and update characters’ beliefs, which is a
fundamental element of ToM (Dennett, 1981; Wimmer & Perner, 1983). For instance, the
Sally-Anne test (Baron-Cohen et al., 1985), a canonical measure of ToM in humans, evaluates
these abilities by requiring participants to track Sally’s belief, which diverges from reality
due to missing information, and Anne’s belief, which updates based on new observations.

We construct CausalToM, a dataset of simple stories involving two characters, each interact-
ing with an object to change its state, with the possibility of observing one another. We then
analyze the internal mechanisms that enable Llama-3-70B-Instruct (Grattafiori et al., 2024)
to reason about and answer questions regarding the characters’ beliefs about the state of
each object. For a sample story, see Section 3 and for the full prompt refer to Appendix A.
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During our investigation of the underlying mechanism responsible for belief tracking,
we discover a pervasive mechanism that performs multiple subtasks, which we refer
to as the Lookback Mechanism. This mechanism enables the model to recall important
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Figure 1: The lookback mechanism
is used to perform conditional reason-
ing; The source token contains informa-
tion that is copied into two instances
via attention to create a pointer and
an address. Alongside the address in
the residual stream is a payload infor-
mation. If necessary, the model can
retrieve the payload by dereferencing
the pointer. The solid lines are move-
ment via residual connections or at-
tention heads, while the dotted line
indicates the attention “looking back”
from pointer to address.

information only when it becomes necessary. In a
lookback mechanism, two copies of a single piece of
information are transferred to two distinct tokens.
In case needed, this allows the attention heads at
the latter token to look back at the earlier one and
retrieve vital information stored there, rather than
transferring that information directly (see Fig. 1).

We identified three key lookback mechanisms that
collectively perform belief tracking: 1) Binding Look-
back (Fig. 3(a)): First the LM assigns Ordering IDs
(OIDs) (Dai et al., 2024) that encode whether a char-
acter, object, or state token appears first or second.
Then, the character and object OIDs are copied to
low-rank subspaces of the corresponding state to-
ken and the final token residual stream. Later, went
the LM needs to answer a question about a char-
acter’s beliefs, it uses this information to retrieve
the answer state OID. 2) Answer Lookback (Fig. 3(b)):
Uses the answer state OID from the binding look-
back to retrieve the answer state token value. 3)
Visibility Lookback (Fig. 7): When an explicit visibil-
ity condition between characters is mentioned, the
model employs additional reference information
called the Visibility ID to retrieve information about
the observed character, augmenting the observing
character’s awareness.

Overall, this work not only advances our under-
standing of the internal computations in LMs that
enable ToM abilities but also uncovers a pervasive
mechanism that serves as the foundation for execut-
ing complex, condition-based logical reasoning.

2 The Lookback Mechanism

Our investigations of belief tracking uncover a re-
curring pattern of computation that we call lookback.1 We give here a brief overview of this
mechanism; subsequent sections provide detailed experiments and analyses. In lookback,
source information is copied via attention into an address copy in the residual stream of a
recalled token and a pointer copy in the residual stream of a lookback token that occurs later
in the text. The LM places the address alongside a payload of the recalled token’s residual
stream that can be brought forward to the lookback token via attention if necessary. Fig. 3
schematically describes a general lookback.

That is, the LM can use attention to dereference the pointer and retrieve the payload present
in the residual stream of the recalled token (that might contain aggregated information
from previous tokens), bringing it to the residual stream of the lookback token. Specifically,
the pointer at the lookback token forms an attention query vector, while the address at the
recalled token forms a key vector. Because the pointer and the address are copies of the

1Although this mechanism may resemble induction heads (Elhage et al., 2021; Olsson et al., 2022),
they differ fundamentally. In induction heads, information from a previous token occurrence is passed
only to the subsequent token through K-composition, without being duplicated to its next occurrence.
In contrast, the lookback mechanism copies the same information not only to the location where the
vital information resides but also to the target location that needs to retrieve that information.
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same source information, they would have a high dot-product, hence a QK-circuit (Elhage
et al., 2021) is established forming a bridge from the lookback token to the recalled token.
The LM uses this bridge to move the payload that contains information needed to complete
the subtask through the OV-circuit.

To develop an intuition for why an LM would learn to implement lookback mechanisms to
solve reasoning tasks such as our belief tracking task, consider that during training, LMs
process text with no awareness of what might come next. Then, it would be useful to locate
addresses alongside payloads that might be useful for downstream tasks. In our setting, the
LM constructs a representation of the story without any knowledge of what questions it
may be asked about, so the LM concentrates pieces of information in the residual stream of
certain tokens that later become payloads and addresses. When the question text is reached,
pointers are constructed that reference this crucial story information and dereference it as
the answer to the question.

3 Preliminaries

Dataset

Existing datasets for evaluating ToM capabilities of LMs are designed for behavioral testing
and lack the ability to construct counterfactual pairs needed for causal analysis (Kim &
Sundar, 2012). To address this, we constructed CausalToM, a structured dataset of simple
stories, where each story involves two characters, each interacting with a distinct object
causing the object to take a unique state. For example: “Character1 and Character2 are
working in a busy restaurant. To complete an order, Character1 grabs an opaque
Object1 and fills it with State1. Then Character2 grabs another opaque Object2 and
fills it with State2.” We then ask the LM to reason about one of the characters’ beliefs
regarding the state of an object: “What does Character1 believe Object2 contains?” We
analyze the LM’s ability to track characters’ beliefs in two distinct settings. (1) No Visibility,
where both characters are unaware of each other’s actions, and (2) Explicit Visibility where
explicit information about whether a character can/cannot observe the other’s actions is
provided, e.g., “Bob can observe Carla’s actions. Carla cannot observe Bob’s actions.”
We also provide general task instructions (e.g., use unknown to answer no awareness cases);
refer to Appendix A, B for the full prompt and additional dataset details. Our experiments
analyze the Llama-3-70B-Instruct model in half-precision, using NNsight (Fiotto-Kaufman
et al., 2025). The model demonstrates a high behavioral performance on both the no-visibility
and explicit-visibility settings, achieving accuracy of 95.7% and 99% respectively. For all
subsequent experiments, we filter out samples that the model fails to answer correctly.

Causal Mediation Analysis

Our goal is to develop a mechanistic understanding of how Llama-3-70B-Instruct reasons
about characters’ beliefs and answers related questions (Saphra & Wiegreffe, 2024). A key
method for conducting causal analysis is Interchange Interventions (Vig et al., 2020; Geiger
et al., 2020; Finlayson et al., 2021), in which the LM is run on paired examples: an original
input o and a counterfactual input c and certain internal activations in the LM run on the
original are replaced with those computed from the counterfactual. The effect of these
interventions is quantified using interchange intervention accuracy (IIA), which measures the
proportion of instances where the intervened output matches an expected output.

Drawing inspiration from existing literature (Vig et al., 2020; Meng et al., 2022; Wang et al.,
2023), we begin our analysis by performing interchange interventions with counterfactuals
that are identical to the original except for key input tokens. We trace the causal path from
these key tokens to the final output. This is a type of Causal Mediation Analysis. Specifically,
we construct a counterfactual dataset where o contains a question about the belief of a
character not mentioned in the story, while c is identical except that the story includes
the queried character. The expected outcome of this intervention is a change in the final
output of o from unknown to a state token, such as beer. We conduct similar interchange
interventions for object and state tokens. Refer to Appendix E for more details.
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Figure 2: Tracing Information flow of crucial input tokens using causal mediation analysis.

Figure 2 presents the aggregated results of this experiment for the key input tokens
Character1, Object1, and State1. The cells are color-coded to indicate IIA. Even at this
coarse level of analysis, several significant insights emerge: 1) Information from the correct
state token (beer) flows directly from its residual stream to that of the final token in later
layers, consistent with prior findings (Lieberum et al., 2023; Prakash et al., 2024); 2) Informa-
tion associated with the query character and the query object is retrieved from their earlier
occurrences and passed to the final token before being replaced by the correct state token.

Desiderata Based Patching via Causal Abstraction

The causal mediation experiments provide a coarse-grained analysis of how information
flows from an input token to the output, but does not identify what that information is.
A fact about transformers is that the input to the first layer contains input tokens and the
output from the final layer contains the output token, but what is the information content of
the causal path in between the input and output?

To answer this question, we turn to Causal Abstraction (Geiger et al., 2021; 2024). We align
the variables of a high-level causal model with the LM’s internal activations and verify the
alignment by conducting targeted interchange interventions for each variable. Specifically,
we perform aligned interchange interventions at both levels: high-level interventions that
target causal variables and low-level interventions that modify features of the LM’s hidden
vectors. If the LM produces the same output as the high-level causal model under these
aligned interventions, it provides evidence supporting the hypothesized causal model. Refer
to Appendix C for more details about the high-level causal model.

In addition to performing interchange interventions on entire residual stream vectors in
LMs, we also intervene on specific subspaces to further localize causal variables. To identify
the subspace encoding a particular variable, we employ the Desiderata-based Component
Masking (De Cao et al., 2020; Davies et al., 2023; Prakash et al., 2024) technique, which
learns a sparse binary mask over the internal activation space by maximizing the logit of
the expected output token. Specifically, we train a mask to select the singular vectors in the
activation space that encode a high-level variable. For further details, refer to Appendix F.

4 Belief Tracking via Ordering IDs and Lookback Mechanisms

When presented with belief tracking tasks where characters have no visibility of each
other, the LM solves the task using three key mechanisms: ordering ID assignment, binding
lookback, and answer lookback, which are described in detail in the following subsections and
summarized as psuedocode in the Appendix D.

4.1 Ordering ID Assignment

LM processes input tokens by assigning an Ordering ID (OID) to each crucial token, including
character, object, and state tokens (Dai et al., 2024). These OIDs, encoded in a low-rank
subspace of the internal activation, serve as a reference that indicates whether an entity is
the first or second of its type, regardless of its token value. For example, in Fig. 3, Bob is
assigned the first character OID, while Carla receives the second character OID. We validate
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Figure 3: Belief Tracking with no visibility between characters. The LM assigns ordering IDs
(OIDs) to each character, object, and state that encode their order of appearance. (a) Binding lookback.
Address copies of character and object OIDs are placed alongside the state OID payload in the residual
stream of state tokens while pointer copies are moved to the final token residual stream. The pointers
are dereferenced, bringing the state OID into the final token residual stream. (b) Answer lookback.
An address copy of the state OID is alongside the state token payload in the residual stream of state
tokens while a pointer copy is moved to the final token residual stream via binding lookback. The
pointer is dereferenced, bringing the answer state token payload into the final token residual stream.

the presence of OIDs through multiple experiments, where intervening on tokens with
identical token values but different OIDs alters the model’s internal computation, leading to
changes in the final output, in the subsequent subsections and Appendix G & H. The same
process applies to object and state tokens. The model then uses these OIDs as fundamental
units of analysis, feeding them into lookback mechanisms that perform logical operations.

4.2 Uncovering the Binding Lookback Mechanism

The Binding lookback is the first operation applied to these OIDs. The character and object
OIDs, serving as the source information, are duplicated into two instances each. One copy,
referred to as the address, is placed in the residual stream of the state token (recalled token),
alongside the state OID as the payload to transfer. The other copy, known as the pointer, is
moved in the residual stream of the final token (lookback token). These pointer and address
copies are then used to form the QK-circuit at the lookback token, which dereferences the
state OID payload, transferring it from the state token to the final token. See Fig.3 for a
schematic of this lookback and see Fig.1 for the general mechanism.

Localizing the Address and Payload In our first experiment, we localize the address
copies of the character and object OIDs and the state OID payload to the residual stream of
the state token (recalled token), as illustrated in Fig. 3. We construct a counterfactual dataset
where each example consists of a original input o with an answer that isn’t unknown and
a counterfactual input c where the character, object, and state tokens are identical, except
the ordering of the two sentences is swapped while the question remains unchanged, as
illustrated in Fig. 4.2. The expected outcome predicted by our high-level causal model
under intervention is the other state token from the original example, because reversing the
address and payload values without changing the pointer flips the output. In the low-level
LM, the QK-circuit, formed using the pointer at the lookback token, attends to the other
state token and retrieves its state OID as the payload.
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Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with coffee.
Then Bob grabs another opaque bottle and fills it with beer.
Question: What does Carla believe the cup contains?
Answer: coffee

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Expected Output: beer
0 10 20 30 40 50 60 70

Layers
0.0

0.2

0.4

0.6

0.8

1.0

In
te

rv
en

tio
n 

Ac
cu

ra
cy Full residual

Subspace,
dimension  14

C
ou

nt
er

fa
ct

ua
l

O
ri

gi
na

l

Figure 4: Payload and address of Binding lookback: We perform interchange interventions on the
residual stream vectors of the state tokens, one layer at a time.

Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Question: What does Carla believe the cup contains?
Answer: tea

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Expected Output: beer
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Figure 5: Source Information of Binding lookback: We perform interchange interventions on the
residual stream vectors up to a given layer (represented by the x-axis) at the character and object
tokens, while keeping all residual vectors of the state token frozen.

We perform an interchange intervention experiment layer-by-layer, where we replace the
residual stream vectors at the first state token in the original run with that of the second
state token in the counterfactual run and vice versa for the other state token. It is important
to note that if the intervention targets state token values instead of their OIDs, it should not
produce the expected output.

As shown in Fig. 4.2, the strongest alignment occurs between layers 33 and 38, confirming
our hypothesis that the state token’s residual stream contains both the address information
(character and object OIDs) and the payload information (state OID). These components are
subsequently used to form the appropriate QK and OV circuits.

Localizing the Source Information Shown in Fig. 3, the source information is copied as
both the address and the pointer at different token positions. As such, to localize the source
information, we conduct two intervention experiments: 1) interchanging the residual stream
vectors of the source tokens (characters and objects) and 2) interchanging the source tokens
while freezing the residual stream of the recalled tokens (state), which contain the address.

We generate a dataset where the counterfactual example, c, swaps the order of the characters
and objects and replaces the state tokens with entirely new ones, while keeping the question
the same as in o. In the high-level causal model, the expected outcome for the first experi-
ment is the same token, e.g., coffee, because the address and the pointer are both flipped,
resulting in no change. The expected outcome of the second experiment is the other state
token, e.g., beer in Fig. 5. In the low-level LM, when neither the address nor the pointer is
frozen, both are updated through the intervention, causing the QK-circuit at the lookback
token to attend to the same state token and retrieve its state OID as the payload.

As shown in Fig. 5, we observe alignment in the second experiment between layers 20− 34,
indicating that the source information, specifically the character and object OIDs, is present
in their respective token residual streams between these layers. As expected, no alignment
is observed in the first experiment, as illustrated in Fig. 13. These results not only confirm
the presence of source information but also establish its transfer to the recalled and lookback
tokens as addresses and pointers, respectively. We provide more experimental results in
Appendix G on localizing character and object OIDs separately.

6



Preprint. Under review.

Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Question: What does Carla believe the cup contains?
Answer: tea

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Expected Output — Answer Pointer: beer Answer Payload: tea
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Figure 6: Answer Lookback Pointer and Payload: The state OID payload of the binding lookback is
the pointer for the answer lookback. We perform interchange interventions on the residual stream
of the final token with two expected outputs. The expected output for the pointer is the other state
token in the original, whereas the expected output for the payload is the correct state token of the
counterfactual.

Localizing the Pointers The pointer copies of the character and object OID are first formed
at the character and object tokens in the question before being moved again to the final
token for dereferencing. Refer to Appendix H for experiments and more details.

4.3 Uncovering the Answer Lookback Mechanism

The LM answers the question using the Answer Lookback. The state OID of the correct answer
serves as the source information, which is copied into two instances. One instance, the
address copy of the state OID, is in the residual stream of the state token (the recalled token)
with the state token itself as the payload. The other instance, the pointer copy of the state
OID, is transferred to the residual stream of the final token as the binding lookback payload.
This pointer is then dereferenced, bringing the state token payload into the residual stream
of the final token. See Fig. 3 for the answer lookback and Fig. 1 for the general mechanism.

Localizing the Pointers We first localize the pointer of the answer lookback, which is the
payload of the binding lookback. To achieve this, we conduct another interchange interven-
tion experiment where the residual vectors at the final token position in the original run
are replaced with those from the counterfactual run, one layer at a time. The counterfactual
inputs have swapped objects and characters and randomly sampled states. If the answer
pointer is targeted in the high-level causal model, the expected output is the other state in
the original input, e.g., beer. As shown in Fig. 6, alignment begins at layer 34, indicating
that this layer contains the pointer information, in low-rank subspace, used to retrieve the
correct state token as the payload, which remains causally relevant until layer 52.

Localizing the Payload To determine where the model uses the correct state OID pointer
to retrieve the correct state token, we use the same interchange intervention experiment.
However, in this case, the expected output is the correct state token from the counterfactual
example, rather than the state token from the original example, as illustrated in Fig. 6.
The alignment occurs after layer 56, indicating that the model retrieves the correct state
token (payload) into the final token’s residual stream at layer 56 and beyond, where it is
subsequently used to generate the final output.

5 Impact of Visibility Conditions on Belief Tracking Mechanism

In the previous section, we demonstrated how the LM uses ordering IDs and two lookback
mechanisms to track the beliefs of characters that cannot observe each other. Now, we
explore how the LM updates the beliefs of characters when provided with additional infor-
mation—that one of the characters (observing) can observe the actions of others (observed).
We hypothesize that the LM employs another lookback mechanism, which we refer to as
the Visibility Lookback, to incorporate information about the observed character.

As illustrated in Fig. 7, we hypothesize that the LM first generates a Visibility ID at the
residual stream of the visibility sentence, serving as the source information. The address
copy of the visibility ID remains in the residual stream of the visibility sentence, while its
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Figure 7: Visbility Lookback When one character (the observing character) can see another (the
observed character), the LM assigns a visibility ID to the visibility sentence. An address copy of
this visibility ID remains in the visibility sentence’s residual stream. A pointer copy of the visibility
ID is transferred to the question’s residual stream (lookback tokens). During processing, the model
dereferences this pointer through a QK-circuit, bringing forward the payload. Based on initial evidence,
this payload contains the observed character’s OID. Refer to Appendix I for more details. This
mechanism allows the model to incorporate the observed character’s knowledge into the observing
character’s belief state, enabling more complex belief reasoning.

pointer copy gets transferred to the residual streams of the question tokens, which are the
lookback tokens. Then LM forms a QK-circuit at the lookback token and dereferences the
visibility ID pointer to bring forward the payload.

Although we were unable to determine the exact semantics of the payload in this lookback,
we speculate that it represents the character OID of the observed character from the visibility
sentence. We propose the existence of another lookback, where the story sentence associated
with the observed character serves as the source, and its payload encodes information
about the observed character. This information is then retrieved by the lookback tokens
of the Visibility lookback, with the payload also containing the observed character’s OID,
which contributes to the queried character’s enhanced awareness. For more details on the
speculated lookback, please refer to Appendix I.

5.1 Uncovering the Visibility Lookback Mechanism

Localizing the Source Information To localize the source information, we conduct an
interchange intervention experiment using the same story sentences but with different
state tokens and visibility information. In the original example o, the first character cannot
observe the second character’s actions, whereas in the counterfactual example c, the first
character can observe them, as illustrated in Fig. 8. The interchange intervention is executed
on visibility sentence tokens by replacing their residual vectors in the original run with
those from the counterfactual run. The expected outcome of this intervention is a change
in the final output of the original run from “unknown” to the state token associated with
the queried object. As shown in Fig. 8 (– line), alignment occurs between layers 10 and 23,
indicating that the visibility ID remains encoded in the visibility sentence until layer 23,
after which it is transferred to subsequent tokens.

Localizing the Payload To localize the payload information, we use the same counterfac-
tual dataset. However, instead of intervening on the source or recalled tokens, we intervene
on the lookback tokens, specifically the question and answer tokens. As in the previous
experiment, we replace the residual vectors of these tokens in the original run with those
from the counterfactual run. As shown in Fig. 8 (– line), alignment occurs only after layer
31, indicating that the information enhancing the queried character’s awareness is present
in the lookback tokens only after this layer.
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Carla and Bob are working in a busy restaurant. To complete an
order, Carla grabs an opaque cup and fills it with tea. Then Bob
grabs another opaque bottle and fills it with water. Bob cannot
observe Carla’s actions. Carla can observe Bob’s actions.
Question: What does Carla believe the bottle contains?
Answer: water

Bob and Carla are working in a busy restaurant. To complete an
order, Carla grabs an opaque cup and fills it with beer. Then Bob
grabs another opaque bottle and fills it with coffee. Bob cannot
observe Carla’s actions. Carla cannot observe Bob’s actions.
Question: What does Carla believe the bottle contains?
Answer: unknown

Expected Output: coffee
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Figure 8: Visibility Lookback. The interventions on the visibility sentence are successful until the
visibility ID source information is split into two copies and the interventions on the question sentences
are successful once the payload of the observed character OID is brought over. The gap in layers
where interventions on the visibility sentence stop working and interventions on the question sentence
start working is exactly where the visibility lookback is hypothesized to take place.

Localizing the Address and Pointer The previous two experiments suggest the presence
of a lookback mechanism, as there is no signal indicating that the source or payload have
been formed between layers 24 and 31. We hypothesize that this lack of signal is due to a
mismatch between the address and pointer information at the recalled and lookback tokens.
Specifically, when intervening only on the recalled token after layer 25, the pointer is not
updated, whereas intervening only on the lookback tokens leaves the address unaltered,
leading to the mismatch. To test this hypothesis, we conduct another intervention using
the same counterfactual dataset, but this time, we intervene on the residual vectors of both
the recalled and lookback tokens, i.e., the visibility sentence, as well as the question and
answer tokens. As shown in Fig. 8 (– line), alignment occurs after layer 10 and remains
stable, supporting our hypothesis. This intervention replaces both the address and pointer
copies of the visibility IDs, enabling the LM to form a QK-circuit and retrieve the payload.

6 Related Work

Theory of mind in LMs A large body of work has focused on benchmarking different
aspects of ToM through various tasks that attempt to assess LMs’ performance such as Le
et al. (2019); Xu et al. (2024); Shapira et al. (2023); Jin et al. (2024); Wu et al. (2023); Kim et al.
(2023b); Chan et al. (2024); Strachan et al. (2024b) and many more. In addition, there are
various methods tailored to improve ToM ability in LMs through prompting (e.g., Sclar
et al., 2023; Zhou et al., 2023; Wilf et al., 2024; Moghaddam & Honey, 2023; Hou et al., 2024).
Only a few works relate to counterfactual inputs needed for causal analysis (Gandhi et al.,
2024; Shapira et al., 2024).

Entity tracking in LMs Entity tracking and variable binding are crucial abilities for LMs to
exhibit not only coherent ToM capabilities, but also neurosymbolic reasoning. Many existing
works have attempted to decipher this ability in LMs (Li et al., 2021; Davies et al., 2023; Kim
& Schuster, 2023; Prakash et al., 2024; Feng & Steinhardt, 2023; Feng et al., 2024; Dai et al.,
2024). Our work builds on their empirical insights and extends the current understanding
of how LMs bind various entities defined in context.

Mechanistic interpretability of theory of mind Only a few empirical studies explored the
underlying mechanisms of ToM of LM (Zhu et al., 2024; Bortoletto et al., 2024) (Herrmann &
Levinstein, 2024, is a notable theoretical paper). Those studies focus on probing techniques
(Belinkov, 2022; Alain, 2016) to identify internal representations of beliefs and used steering
techniques (Li et al., 2024; Rimsky et al., 2023) to improve LM performance by manipulating
their activations. However, the mechanism by which LMs solve those tasks remains a black
box, limiting our ability to understand, predict, and control LMs’ behaviors.

7 Conclusion

Through a series of desiderata-based patching experiments, we have mapped the mecha-
nisms underlying the processing of partial knowledge and false beliefs in a set of simple
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stories. We are struck by the pervasive appearance of a single recurring computational
pattern: the lookback, which resembles a pointer dereference inside a transformer. The LMs
use a combination of several lookbacks to reason about nontrivial visibility and belief states.
Our improved understanding of these fundamental computations gives us optimism that it
will be possible to fully reveal the algorithms underlying Theory of Mind in LMs.
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A Full prompt

No Visibility

Instruction: 1. Track the belief of each character as described in the story. 2.
A character’s belief is formed only when they perform an action themselves or can
observe the action taking place. 3. A character does not have any beliefs about the
container and its contents which they cannot observe. 4. To answer the question,
predict only what is inside the queried container, strictly based on the belief
of the character, mentioned in the question. 5. If the queried character has no
belief about the container in question, then predict ‘unknown’. 6. Do not predict
container or character as the final output.
Story: Bob and Carla are working in a busy restaurant. To complete an order, Bob
grabs an opaque bottle and fills it with beer. Then Carla grabs another opaque cup
and fills it with coffee.
Question: What does Bob believe the bottle contains?
Answer:

Explicit Visibility

Instruction: 1. Track the belief of each character as described in the story. 2.
A character’s belief is formed only when they perform an action themselves or can
observe the action taking place. 3. A character does not have any beliefs about the
container and its contents which they cannot observe. 4. To answer the question,
predict only what is inside the queried container, strictly based on the belief
of the character, mentioned in the question. 5. If the queried character has no
belief about the container in question, then predict ‘unknown’. 6. Do not predict
container or character as the final output.
Story: Bob and Carla are working in a busy restaurant. To complete an order, Bob
grabs an opaque bottle and fills it with beer. Then Carla grabs another opaque cup
and fills it with coffee. Bob can observe Carla’s actions. Carla cannot observe
Bob’s actions.
Question: What does Bob believe the cup contains?
Answer:

B The CausalToM Dataset

In total, there are 4 templates (one without and 3 with explicit visibility statements). Each
template allows 4 different types of questions (CharacterX asked about ObjectY). we used
lists of 103 Characters, 21 Objects, and 30 States. In our patching experiments (Sec. 4.2), We
randomly sample 80 pairs of an original and a counterfactual stories in total.

C Desiderate Based Patching Via Causal Abstraction

Causal Models and Interventions A deterministic causal modelM has variables that take
on values. Each variable has a mechanism that determines the value of the variable based on
the values of parent variables. Variables without parents, denoted X, can be thought of as
inputs that determine the setting of all other variables, denotedM(x). A hard intervention
A← a overrides the mechanisms of variable A, fixing it to a constant value a.

Interchange Interventions We perform interchange interventions (Vig et al., 2020; Geiger
et al., 2020) where a variable (or set of features) A is fixed to be the value it would take
on if the LM were processing counterfactual input c. We write A ← Get(M(c), A) where
Get(M(c), A) is the value of variable A whenM processes input c. In experiments, we will
feed a base input b to a model under an interchange interventionMA←Get(M(c),A))(b).

Featurizing Hidden Vectors The dimensions of hidden vectors are not an ideal unit
of analysis (Smolensky, 1986), and so it is typical to featurize a hidden vector using some
invertible function, e.g., an orthogonal matrix, to project a hidden vector into a new variable
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space with more interpretable dimensions called “features”(Mueller et al., 2024). A feature
intervention Fh ← f edits the mechanism of a hidden vector h to fix the value of features Fh
to f.

Alignment The LM is a low-level causal model L where variables are dimensions of hidden
vectors and the hypothesis about LM structure is a high-level causal modelH. An alignment
Π assigns each high-level variable A to features of a hidden vector FA

h , e.g., orthogonal
directions in the activation space of h. To evaluate an alignment, we perform intervention
experiments to evaluate whether high-level interventions on the variables in H have the
same effect as interventions on the aligned features in L.

Causal Abstraction We use interchange interventions to reveal whether the hypothesized
causal model H is an abstraction of an LM L. To simplify, assume both models share an
input and output space. The high-level modelH is an abstraction of the low-level model L
under a given alignment when each high-level interchange intervention and the aligned
low-level intervention result in the same output. For a high-level intervention on A aligned
with low-level features FA

h with a counterfactual input c and base input b, we write

GetOutput(LFA
h←Get(L(c),FA

h ))(b)) = GetOutput(HA←Get(H(c),A))(b)) (1)

If the low-level interchange intervention on the LM produces the same output as the aligned
high-level intervention on the algorithm, this is a piece of evidence in favor of the hypothesis.
This extends naturally to multi-variable interventions (Geiger et al., 2024).

Graded Faithfulness Metric We construct counterfactual datasets for each causal variable
where an example consists of a base prompt and a counterfactual prompt . The counterfactual
label is the expected output of the algorithm after the high-level interchange intervention,
i.e., the right-side of Equation 1. The interchange intervention accuracy is the proportion of
examples for which Equation 1 holds, i.e., the degree to whichH faithfully abstracts L.

Aligning Features to Causal Variables In our experiments, we use principal component
analysis (PCA) to featurize residual stream vectors, i.e., features are the orthogonal principal
components. For a given transformer layer and token location, we collect the residual stream
vectors across a large number of examples and compute the principal components. Given
PCA features Fh of a hidden vector h in the residual stream of the LM L, we select features
to align with a causal variable A in causal modelH using Desiderata-Based Masking (DBM)
(De Cao et al., 2020; Davies et al., 2023; Prakash et al., 2024). Given base input b and
counterfactual input c, we train a mask m ∈ [0, 1]|Fh| on the objective

CE
(
GetLogits

(
LFh←m◦Get(L(c),Fh))

(b)
)
,GetLogits

(
HA←Get(H(c),A))(b)

))
(2)
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D Pseudocode for the Belief Tracking High-Level Causal Model

Algorithm 2 High-level causal model for the no visibility

1: procedure BELIEFREPRESENTATION(c1, o1, s1, c2, o2, s2, qc, qo)
2: Ordering ID assignment
3: cOID

1 , oOID
1 , sOID

1 ← AssignOIDS([c1, o1, s1], 1)
4: cOID

2 , oOID
2 , sOID

2 ← AssignOIDS([c2, o2, s2], 2)
5:
6: Binding lookback mechanism
7: binding address1 ← (copy(cOID

1 ), copy(oOID
1 ))

8: binding address2 ← (copy(cOID
2 ), copy(oOID

2 ))
9:

10: qOID
c ← copy({c1 : cOID

1 , c2 : cOID
2 }[qc])

11: qOID
o ← copy({o1 : oOID

1 , o2 : oOID
2 }[qo])

12: binding pointer← (qOID
c , qOID

o )
13:
14: if binding address1 = binding pointer then
15: binding payload← copy(sOID

1 )
16: else if binding address2 = binding pointer then
17: binding payload← copy(sOID

2 )
18: end if
19:
20: Answer lookback mechanism
21: answer pointer← binding payload
22: answer1 address← sOID

1
23: answer2 address← sOID

2
24: if answer1 address = answer pointer then
25: answer payload← s1
26: else if answer2 address = answer pointer then
27: answer payload← s2
28: end if
29: return answer payload
30: end procedure

E Causal Mediation Analysis

In addition to the experiment shown in Fig.9, we conduct similar experiments for the object
and state tokens by replacing them in the story with random tokens, which alters the original
example’s final output. However, patching the residual stream vectors of these tokens from
the counterfactual run restores the relevant information, enabling the model to predict the
expected output. The results of these experiments are collectively presented in Fig.2, with
separate heatmaps shown in Fig. 10, 11, 12.

F Desiderata-based Component Masking

While interchange interventions on residual vectors reveal where a causal variable might
be encoded in the LM’s internal activations, they do not localize the variable to specific
subspaces. To address this, we apply the Desiderata-based Component Masking technique,
which learns a sparse binary mask over the singular vectors of the LM’s internal activa-
tions. First, we cache the internal activations from 500 samples at the token positions
where residual-level interchange interventions align with the expected output. Next, we
apply Singular Value Decomposition to compute the singular vectors, which are then used
to construct a projection matrix. Rather than replacing the entire residual vector with that
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Bob and Carla are working in a busy restaurant. To complete an
order, Bob grabs an opaque bottle and fills it with beer. Then
Carla grabs another opaque cup and fills it with coffee.
Question: What does Bob believe the bottle contains?
Answer: beer

David and Carla are working in a busy restaurant. To complete an
order, David grabs an opaque bottle and fills it with beer. Then
Carla grabs another opaque cup and fills it with coffee.
Question: What does Bob believe the bottle contains?
Answer: unknown

Expected Output: beer
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Figure 9: Causal Mediation Analysis: The original example produces the output unknown
because Bob is not mentioned in the story, leaving the model without any information
about his beliefs. However, when the residual stream vectors corresponding to Bob from
the counterfactual run are patched into the original run, the model acquires the necessary
information about that character and consequently updates its output to beer.
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Figure 10: Information flow of character input tokens using causal mediation analysis.
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Figure 11: Information flow of object input tokens using causal mediation analysis.
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Figure 12: Information flow of state input tokens using causal mediation analysis.
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from the counterfactual run, we perform subspace-level interchange interventions using the
following equations:

Wproj = V ∗ VT (3)
horg ← Wprojhcounterfactual + (I−Wproj)horiginal (4)

Here, V is a matrix containing stacked singular vectors, while hcounter f actual and horiginal
represent the residual stream vectors from the counterfactual and original runs, respectively.
The core idea is to first remove the existing information from the subspace defined by the
projection matrix and then insert the counterfactual information into that same subspace
using the same projection matrix. However, in DCM, instead of utilizing the entire internal
activation space, we learn a binary mask over the projection matrix to identify the desired
subspace. Specifically, before applying the intervention, we use the following equations to
select the relevant subspace:

Wproj ← Wproj ∗mask (5)

We train the mask on 80 examples of the same counterfactual dataset and use another 80 as
the validation set. We use the following objective function, which maximizes the logit of the
expected token:

L = −logitexpected output + λ ∑ 1−W (6)

Where λ is a hyperparameter used to control the rank of the subspace and W is the parameter
of the learnable mask. We trained it for one epoch with ADAM optimizer, a batch size of 4
and a learning rate of 0.01.

G Aligning Character and Object OIDs

As mentioned in section 4.2, the source information, consisting of character and object OID,
is transferred to the recalled token (state token) to form the address. Here, we describe
another experiment to verify that the source information is copied to both the address and
the pointer. More specifically, we conduct the same interchange intervention experiment as
described in Fig. 5, but without freezing the residual vectors at the state tokens. Based our
hypothesis, this intervention will not be able to change the state of the original run, since the
intervention at the source information will affect both address and pointer, hence making
the model form the correct QK-circuit.

Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with coffee.
Then Bob grabs another opaque bottle and fills it with beer.
Question: What does Carla believe the cup contains?
Answer: coffee

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Expected Output: beer
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Figure 13: Intervention Source Information without freezing address and pointer: To swap
the source information of the binding lookback, i.e., the initial character and object OIDs, we
perform interchange interventions on their respective residual stream vectors up to a given
layer (represented by the x-axis).

In section 4.3, we localized the source information, but it did not provide complete details
about the location of each character and object OID. Therefore, in this section, we will
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localize both separately to better understand at which layers they appear in the residual
streams of their respective tokens, as shown in Fig.14 and Fig.15.

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Expected Output: water
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Figure 14: Character OID: This interchange intervention experiment swaps the character
OID, while freezing the object and state OIDs. Swapping the character OIDs in the story
tokens changes the queried character OID to the other one. Hence, the final output changes
from unknown to water.

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Expected Output: tea
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Figure 15: Object OID: This interchange intervention experiment swaps both the character
and object OIDs, while freezing the state OID. Swapping both character and object OIDs in
the story tokens ensures that the queried object gets the other OID. Hence, the final output
changes from unknown to water.

H Aligning Query Character and Object OIDs

In section 4.3, we localized the pointer information. However, we found that this information
is transferred to the lookback token (last token) through two intermediate tokens: the queried
character and the queried object. In this section, we separately localize the OIDs of the
queried character and queried object, as shown in Fig. 16 and Fig. 17.

I Speculated Payload in Visibility Lookback

As mentioned in section 5, the payload of the Visibility lookback remains undetermined.
In this section, we attempt to disambiguate its semantics using the Attention Knockout
technique introduced in (Geva et al., 2023), which helps reveal the flow of crucial information.
We apply this technique to understand which previous tokens are vital for the formation of
the payload information. Specifically, we ”knock out” all attention heads at all layers of the
second visibility sentence, preventing them from attending to one or more of the previous
sentences. Then, we allow the attention heads to attend to the knocked-out sentence one
layer at a time.
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Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Question: What does Carla believe the bottle contains?
Answer: unknown

Expected Output: water
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Figure 16: Query Character OID: This interchange intervention experiment alters the OID
of the queried character to the other one. Hence, the final output changes from unknown to
water.

Bob and Carla are working in a busy restaurant. To complete
an order, Bob grabs an opaque bottle and fills it with beer.
Then Carla grabs another opaque cup and fills it with coffee.
Question: What does Carla believe the cup contains?
Answer: coffee

Carla and Bob are working in a busy restaurant. To complete
an order, Carla grabs an opaque cup and fills it with tea.
Then Bob grabs another opaque bottle and fills it with water.
Question: What does Bob believe the cup contains?
Answer: unknown

Expected Output: water
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Figure 17: Query Object OID: This interchange intervention experiment alters the OID of
the queried object to the other one. Hence, the final output changes from unknown to water.

If the LM is fetching vital information from the knocked-out sentence, the interchange
intervention accuracy (IIA) post-knockout will decrease. Therefore, an increase in IIA will
indicate which attention heads, at which layers, are bringing in the vital information from
the knocked-out sentence. If, however, the model is not fetching any critical information
from the knocked-out sentence, then knocking it out should not affect the IIA.
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Figure 18: Attention Knockout Results:

To determine if any vital information is influencing the formation of the Visibility lookback
payload, we perform three knockout experiments: 1) Knockout attention heads from the
second visibility sentence to both the first visibility sentence and the second story sentence
(which contains information about the observed character), 2) Knockout attention heads
from the second visibility sentence to only the first visibility sentence, and 3) Knockout
attention heads from the second visibility sentence to the second story sentence. In each
experiment, we measure the effect of the knockout using IIA.
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Fig.18 shows the experimental results. Knocking out any of the previous sentences affects
the model’s ability to produce the correct output. The decrease in IIA in the early layers
can be explained by the restriction on the movement of character OIDs. Specifically, the
second visibility sentence mentions the first and second characters, whose character OIDs
must be fetched before the model can perform any further operations. Therefore, we
believe the decrease in IIA until layer 15, when the character OIDs are formed (based on
the results from Section G), can be attributed to the model being restricted from fetching
the character OIDs. However, the persistently low IIA even after this layer—especially
when both the second and first visibility sentences are involved—indicates that some vital
information is being fetched by the second visibility sentence, which is essential for forming
the coherent Visibility lookback payload. Thus, we speculate that the Visibility payload
encodes information about the observed character, specifically their character OID, which is
later used to fetch the correct state OID.
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